Data Engineering on Google Cloud Platform

Get hands-on experience with designing and building data processing systems on Google Cloud. This course uses lectures, demos, and hand-on labs to show you how to design data processing systems, build end-to-end data pipelines, analyze data, and implement machine learning. This course covers structured, unstructured, and streaming data.

Days : 4
Price :

CAD$3,295.00

Effacer

Description

Course Content

  • Module 1: Introduction to Data Engineering
  • Module 2: Building a Data Lake
  • Module 3: Building a Data Warehouse
  • Module 4: Introduction to Building Batch Data Pipelines,
  • Module 5: Executing Spark on Cloud Dataproc
  • Module 6: Serverless Data Processing with Cloud Dataflow
  • Module 7: Manage Data Pipelines with Cloud Data Fusion and Cloud Composer
  • Module 8: Introduction to Processing Streaming Data
  • Module 9: Serverless Messaging with Cloud Pub/Sub
  • Module 10: Cloud Dataflow Streaming Features
  • Module 11: High-Throughput BigQuery and Bigtable Streaming Features
  • Module 12: Advanced BigQuery Functionality and Performance
  • Module 13: Introduction to Analytics and AI
  • Module 14: Prebuilt ML model APIs for Unstructured Data
  • Module 15: Big Data Analytics with Cloud AI Platform Notebooks
  • Module 16: Production ML Pipelines with Kubeflow
  • Module 17: Custom Model building with SQL in BigQuery ML
  • Module 18: Custom Model building with Cloud AutoML

Who should attend

This class is intended for experienced developers who are responsible for managing big data transformations including:

  • Extracting, loading, transforming, cleaning, and validating data.
  • Designing pipelines and architectures for data processing.
  • Creating and maintaining machine learning and statistical models.
  • Querying datasets, visualizing query results and creating reports

Certifications

This course is part of the following Certifications:

Google Cloud Certified Professional Data Engineer

Prerequisites

To get the most of out of this course, participants should have:

Completed Google Cloud Fundamentals: Big Data and Machine Learning (GCF-BDM) course OR have equivalent experience
Basic proficiency with common query language such as SQL Experience with data modeling, extract, transform, load activities.
Developing applications using a common programming language such as Python Familiarity with basic statistics

  • Completed Google Cloud Fundamentals: Big Data and Machine Learning (GCF-BDM) course OR have equivalent experience
  • Basic proficiency with common query language such as SQL Experience with data modeling, extract, transform, load activities.
  • Developing applications using a common programming language such as Python Familiarity with basic statistics