Developing Generative AI Applications on AWS

Course Overview
This course is designed to introduce generative artificial intelligence (AI) to software developers interested in using large language models (LLMs) without fine-tuning. The course provides an overview of generative AI, planning a generative AI project, getting started with Amazon Bedrock, the foundations of prompt engineering, and the architecture patterns to build generative AI applications using Amazon Bedrock and LangChain.

Days : 2
Price :

CAD$2,600.00

Effacer

Description

Course Content

  • Introduction to Generative AI – Art of the Possible
  • Planning a Generative AI Project
  • Getting Started with Amazon Bedrock
  • Foundations of Prompt Engineering
  • Amazon Bedrock Application Components
  • Amazon Bedrock Foundation Models
  • LangChain
  • Architecture Patterns

Who should attend

This course is intended for:

  • Software developers interested in using LLMs without fine-tuning

Prerequisites

We recommend that attendees of this course have:

Course Objectives

In this course, you will learn to:

  • Describe generative AI and how it aligns to machine learning
  • Define the importance of generative AI and explain its potential risks and benefits
  • Identify business value from generative AI use cases
  • Discuss the technical foundations and key terminology for generative AI
  • Explain the steps for planning a generative AI project
  • Identify some of the risks and mitigations when using generative AI
  • Understand how Amazon Bedrock works
  • Familiarize yourself with basic concepts of Amazon Bedrock
  • Recognize the benefits of Amazon Bedrock
  • List typical use cases for Amazon Bedrock
  • Describe the typical architecture associated with an Amazon Bedrock solution
  • Understand the cost structure of Amazon Bedrock
  • Implement a demonstration of Amazon Bedrock in the AWS Management Console
  • Define prompt engineering and apply general best practices when interacting with foundation models (FMs)
  • Identify the basic types of prompt techniques, including zero-shot and few-shot learning
  • Apply advanced prompt techniques when necessary for your use case
  • Identify which prompt techniques are best suited for specific models
  • Identify potential prompt misuses
  • Analyze potential bias in FM responses and design prompts that mitigate that bias
  • Identify the components of a generative AI application and how to customize an FM
  • Describe Amazon Bedrock foundation models, inference parameters, and key Amazon Bedrock APIs
  • Identify Amazon Web Services (AWS) offerings that help with monitoring, securing, and governing your Amazon Bedrock applications
  • Describe how to integrate LangChain with LLMs, prompt templates, chains, chat models, text embeddings models, document loaders, retrievers, and Agents for Amazon Bedrock
  • Describe architecture patterns that you can implement with Amazon Bedrock for building generative AI applications
  • Apply the concepts to build and test sample use cases that use the various Amazon Bedrock models, LangChain, and the Retrieval Augmented Generation (RAG) approach

Outline: Developing Generative AI Applications on AWS (DGAIA)

Day 1

Module 1: Introduction to Generative AI – Art of the Possible
  • Overview of ML
  • Basics of generative AI
  • Generative AI use cases
  • Generative AI in practice
  • Risks and benefits
Module 2: Planning a Generative AI Project
  • Generative AI fundamentals
  • Generative AI in practice
  • Generative AI context
  • Steps in planning a generative AI project
  • Risks and mitigation
Module 3: Getting Started with Amazon Bedrock
  • Introduction to Amazon Bedrock
  • Architecture and use cases
  • How to use Amazon Bedrock
  • Demonstration: Setting up Bedrock access and using playgrounds
Module 4: Foundations of Prompt Engineering
  • Basics of foundation models
  • Fundamentals of prompt engineering
  • Basic prompt techniques
  • Advanced prompt techniques
  • Model-specific prompt techniques
  • Demonstration: Fine-tuning a basic text prompt
  • Addressing prompt misuses
  • Mitigating bias
  • Demonstration: Image bias mitigation

Day 2

Module 5: Amazon Bedrock Application Components
  • Overview of generative AI application components
  • Foundation models and the FM interface
  • Working with datasets and embeddings
  • Demonstration: Word embeddings
  • Additional application components
  • Retrieval Augmented Generation (RAG)
  • Model fine-tuning
  • Securing generative AI applications
  • Generative AI application architecture
Module 6: Amazon Bedrock Foundation Models
  • Introduction to Amazon Bedrock foundation models
  • Using Amazon Bedrock FMs for inference
  • Amazon Bedrock methods
  • Data protection and auditability
  • Lab: Invoke Bedrock model for text generation using zero-shot prompt
Module 7: LangChain
  • Optimizing LLM performance
  • Integrating AWS and LangChain
  • Using models with LangChain
  • Constructing prompts
  • Structuring documents with indexes
  • Storing and retrieving data with memory
  • Using chains to sequence components
  • Managing external resources with LangChain agents
Module 8: Architecture Patterns
  • Introduction to architecture patterns
  • Text summarization
  • Lab: Using Amazon Titan Text Premier to summarize text of small files
  • Lab: Summarize long texts with Amazon Titan
  • Question answering
  • Lab: Using Amazon Bedrock for question answering
  • Chatbot
  • Lab: Build a chatbot
  • Code generation
  • Lab: Using Amazon Bedrock models for code generation
  • LangChain and agents for Amazon Bedrock
  • Lab: Building conversational applications with the Converse API